4x/(x^2-4)=8/(x^2-4)-4/(x+2)

Simple and best practice solution for 4x/(x^2-4)=8/(x^2-4)-4/(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x/(x^2-4)=8/(x^2-4)-4/(x+2) equation:


D( x )

x+2 = 0

x^2-4 = 0

x+2 = 0

x+2 = 0

x+2 = 0 // - 2

x = -2

x^2-4 = 0

x^2-4 = 0

1*x^2 = 4 // : 1

x^2 = 4

x^2 = 4 // ^ 1/2

abs(x) = 2

x = 2 or x = -2

x in (-oo:-2) U (-2:2) U (2:+oo)

(4*x)/(x^2-4) = 8/(x^2-4)-(4/(x+2)) // - 8/(x^2-4)-(4/(x+2))

(4*x)/(x^2-4)-(8/(x^2-4))+4/(x+2) = 0

(4*x)/(x^2-4)-8*(x^2-4)^-1+4/(x+2) = 0

(4*x)/(x^2-4)-8/(x^2-4)+4/(x+2) = 0

(4*x*(x+2))/((x^2-4)*(x+2))+(-8*(x+2))/((x^2-4)*(x+2))+(4*(x^2-4))/((x^2-4)*(x+2)) = 0

4*x*(x+2)-8*(x+2)+4*(x^2-4) = 0

4*x^2+4*x^2-16-16 = 0

8*x^2-32 = 0

(8*x^2-32)/((x^2-4)*(x+2)) = 0

(8*x^2-32)/((x^2-4)*(x+2)) = 0 // * (x^2-4)*(x+2)

8*x^2-32 = 0

8*x^2 = 32 // : 8

x^2 = 4

x^2 = 4 // ^ 1/2

abs(x) = 2

x = 2 or x = -2

x in { 2}

x in { -2}

x belongs to the empty set

See similar equations:

| 5g+4(-5+3g)=1-1 | | 6=x/4 | | 18-4=36 | | q^2-9q+7=0 | | (2x-2)-(6x-6)=x | | 7-2/5x=15 | | 4(2x+4)=7x+1 | | 11w=88 | | b-7b=12 | | 8(vu-1)-12u=11(2u-6) | | 5+x/2=20 | | 5+7=-3(5x-4) | | (2x-2)+(6x-6)=x | | 2r^2+9r+7=0 | | -x+3=-14 | | 2x+3(5x+1)=108 | | 2r^2+9r-32=-6 | | 14+12u=-16+9u | | 8x=12x+-12 | | 11-0.08= | | 2+x/-5=6 | | 3/4a-14=8 | | 4x/x^2-4=8/x^2-4-4/x+2 | | q+35=78 | | 5(1-3m)=65 | | -6x-2(6x-5)=100 | | 6/23=y/69 | | 3n+2=16 | | p+13+4p-15=796 | | (x+11)(x+3)=-5 | | -61=b+(-18) | | 24=2w-8 |

Equations solver categories